Decoding PI: Deficiency Foundation

Luke Wall, MD

Associate Clinical Professor of Pediatrics Section of Allergy/Immunology Louisiana State University Health Sciences Center Children's Hospital New Orleans

October 24, 2024

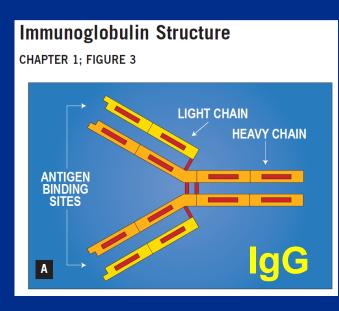
Disclosures

- Chiesi Global Rare Diseases

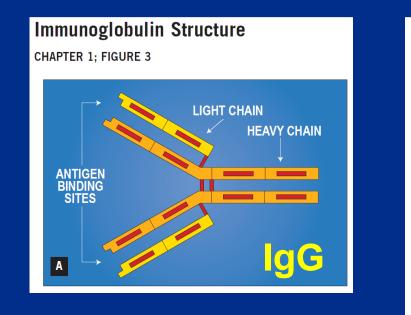
 Clinical trial ADA-SCID
 Advisory board
- Takeda Pharmaceuticals

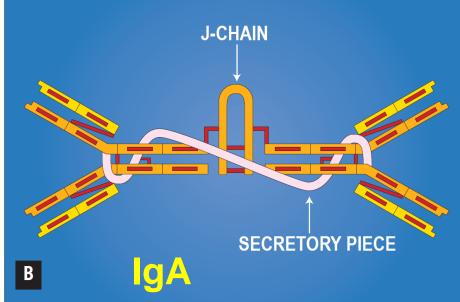
 Clinical trial subcutaneous IgG
- Global Genes: Rare-X

 Immunodeficiency Work Group (Gratis)

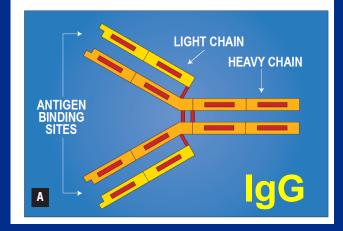

Objectives

- To review the well-defined antibody deficiencies
 - Including: Age of onset, immunologic characteristics, infections, other complications, treatment, prognosis
- To highlight the role of advanced testing for certain antibody deficiencies
- To identify targeted treatments available for some molecular diagnoses

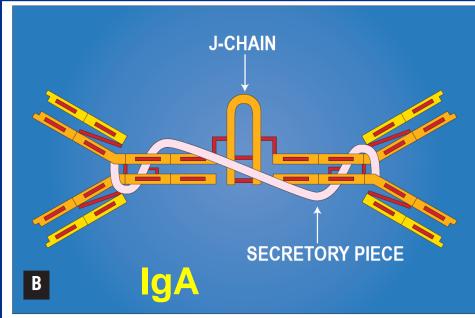

THE BASICS: ANTIBODIES



IDF Patient and Family Handbook. 2013



IDF Patient and Family Handbook. 2013



Immunoglobulin Structure

CHAPTER 1; FIGURE 3

IDF Patient and Family Handbook. 2013

Roles of Antibodies

- Bind to bacteria
 - Prevent bacteria from sticking to human cells
 - Prevents infection
 - Help immune cells to recognize and engulf the bacteria
 - Activate the Complement system
 - Directly destroy the bacteria (drill holes in surface)
 - Enhanced removal of bacteria from bloodstream
 - Enhanced phagocytosis
 - (immune cells eat the bacteria)

Role of Antibodies

- Bind to viruses
 - Neutralize viruses (prevent infection)
 - Form larger "clumps" which make it easier for cells of the immune system to engulf the viruses

Forms of Antibody Deficiencies

- Specific Antibody Deficiency (SAD)
- Selective IgA Deficiency
- IgG Subclass Deficiency
- Hypogammaglobulinemia
 - Transient Hypogam of Infancy
- Common Variable Immune Deficiency (CVID)
- X-Linked Agammaglobulinemia (XLA)

SPECIFIC ANTIBODY DEFICIENCY (SAD)

SAD

• Age:

- Children >2 years old
 - May have symptoms earlier
- Adults
- Immunologic characteristics:
 - Low vaccine titers to Pneumovax-23
 - Normal titers to protein vaccines
 - Normal IgG, IgA, IgM
- Types of infections:
 - Ears, sinus, lungs

SAD

Treatment:

- Treat infections early with prolonged course of antibiotics
- Clinical severity:
 - Mild: Watch and wait
 - Moderate: Prophylactic antibiotics
 - Severe: IgRT (typically 1 to 2 years)

• Prognosis:

- Excellent, most "outgrow"
- Continue monitoring at least annually
- Could be initial finding of a more severe immune defect (rarely)

Many disorders are associated with impaired vaccine response

Box 1

Primary immunodeficiencies and secondary immunodeficient states that may be associated with impaired vaccine response

Primary	Acquired
Wiskott-Aldrich syndrome	Splenectomy
DiGeorge syndrome	Immunosuppression
Asplenia	Malnutrition
Hyper–immunoglobulin E (Job) syndrome	Protein-losing enteropathy
Common variable immune deficiency	Nephrotic syndrome
Dock8 deficiency	Chylothorax
NEMO deficiency	Human immunodeficiency virus infection
Class switch recombination defects	—
Selective immunoglobulin A deficiency	—
Immunoglobulin G subclass deficiency	—

SELECTIVE IGA DEFICIENCY

Selective IgA Deficiency

- Age:
 - Childhood to Adulthood
 - Often silent (without symptoms). Normal life.
- Immunologic characteristics:
 - Absent IgA, with normal IgG and IgM
 - Normal vaccine titers (some exceptions)
 - IgG2 subclass deficiency in some
- Types of infections:
 - Respiratory and Intestinal infections

Selective IgA Deficiency

- Other complications:
 - Autoimmunity
 - Celiac disease
- Treatment:
 - No treatment required for most
 - Antibiotics (longer course)
 - Antibiotic prophylaxis for some
- Prognosis:
 - Excellent, depending on autoimmunity
 - Those with worsening pattern of infection need to be re-evaluated

IGG SUBCLASS DEFICIENCY

IgG Subclasses

- The total serum IgG level is composed of four subclasses:
 - IgG1: 60-70% of total serum IgG level
 - IgG2: 20-30%
 - IgG3: 5-8%
 - IgG4: 1-3%

IgG Subclasses

- IgG subclasses: Overlapping, yet different roles:
 - IgG1 and IgG3: viral antigens
 - IgG2: encapsulated bacteria
 - (Common resp bacteria: Streptococcus and H.flu)

IgG Subclass Deficiency

- Individuals who appear to fight infections in normal fashion may have low IgG subclass.
- IgG Subclass Deficiency is therefore diagnosed when:
 - Patient demonstrates susceptibility to sinopulmonary infections
 - Persistently low IgG subclass (one or more)
 - Normal IgG, IgA, IgM

IgG Subclass Deficiency

- Because IgG1 comprises at least 60% of the total serum IgG level:
 - Low IgG1 often results in low total serum IgG level: Hypogammaglobulinemia

TRANSIENT HYPOGAMMAGLOBULINEMIA OF INFANCY

(THI)

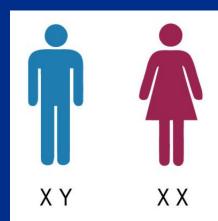
тні

- Age: >= 6 months old

 Infants and toddlers
- Immunologic characteristics:
 - Low IgG
 - IgA and IgM might be low (but present)
 - Normal vaccine titers
- Types of infections:
 - Sinus and ear
 - Other types possible

THI

- Other complications:
 - Allergy is common
- Treatment:
 - Treat infections early and aggressively
 - Monitor (watch and wait)
 - Some may need prophylactic antibiotics
 - Could warrant IgRT if clinically severe
- Prognosis:
 - Resolves over time (2 to 5 years old)
 - May continue to monitor annually into adulthood



X-LINKED AGAMMAGLOBULINEMIA

(XLA)

- X-Linked recessive inheritance
 - Mutation on the X chromosome
 - Passed to next generation
 - Females who have the gene mutation are "silent carrier"
 - Males who have the gene mutation have the disease

XLA

- Age: >= 6 months of age
- Immunologic characteristics:
 - Absent B cells
 - Absent immunoglobulins (no antibodies)
- Types of infections:
 - Bacterial infections of ears, sinus, lungs
 - Skin and tissue infections
 - Viral meningitis (Enterovirus)

XLA

• Other complications:

- Neutropenia
- Autoimmunity
- Treatment:
 - IgRT (essential)
 - Consider prophylactic antibiotics
 - Early and aggressive treatment of infections
- Prognosis:
 - Lifelong disorder
 - Do very well with treatment

COMMON VARIABLE IMMUNE DEFICIENCY

(CVID)

- Age:
 - Adolescence to adulthood
- Immunologic characteristics:
 - Low IgG
 - Low IgA or IgM
 - Low vaccine titers
- Types of infections:
 - Bacterial infections of ears, sinus, lungs
 - Mycoplasma pneumonia "walking pneumonia"
 - Intestinal infections
 - Joint infections

- Other complications:
 - Autoimmunity
 - Cytopenias
 - Organ involvement (lungs, bowel)
- Treatment:
 - IgRT
 - Aggressive treatment of infections
 - Treatment of autoimmunity
 - Monitor for organ involvement
 - Monitor for malignancy

Prognosis:

- Good quality of life if diagnosed early and treated aggressively
- Factors:
 - Organ damage at time of diagnosis
 - Bronchiectasis (Lung damage)
 - Autoimmunity or granulomatous inflammation
 - May require medications to control inflammation

Shift in the Tide:

- Decreased mortality from infections
- Increased longevity for CVID patients
- Increased <u>noninfectious</u> complications

1. Nonas, S. Pulmonary manifestations of PIDD. Immunol Allergy Clin N Am 35 (2015) 753-766.

2. Resnick, E. et al. Morbidity and mortality in CVID over 4 decades. Blood. 2012; 119(7).

The many faces of the clinical picture of common variable immune deficiency

Volume 12 • Number 6 • December 2012

Elena S. Resnick and Charlotte Cunningham-Rundles

<u>CVID: Clinical Manifestations</u>

– Infections	94%
 Autoimmunity and cytopenia 	29%
– Chronic lung disease	29%
 Inflammatory bowel disease 	15%
– Bronchiectasis	11%
 Granulomatous disease 	10%
 Liver disease 	9%
– Lymphoma	8%
– Other cancers	7%
 Malabsorption 	6%

- More aggressive monitoring / treatment
 - Bronchiectasis
 - Low Memory B Cells
 - Granulomatous disease
 - Other organ dysfunction
 - Lungs
 - Kidneys
 - Liver
 - Bowel

Recap: Antibody Deficiencies

- Specific Antibody Deficiency (SAD)
 Weak polysaccharide vaccine response ONLY
- Selective IgA Deficiency
 - Absent IgA ONLY
 - Not treated with IgRT
- IgG Subclass Deficiency
 Low IgG subclass ONLY controversial

Recap: Antibody Deficiencies

- Transient Hypogam of Infancy
 - Low Immunoglobulins ONLY
 - (retrospective diagnosis- requires monitoring)
- CVID
 - Older child or adult
 - Low IgG (plus low IgA and/or IgM)
 - Weak vaccine response
 - Autoimmunity common and possibly severe
- X-Linked Agammaglobulinemia (XLA)
 - Infant
 - Absent immunoglobulins
 - <u>Absent</u> B cells

CVID LOOK-ALIKES $DX \rightarrow TREAT$

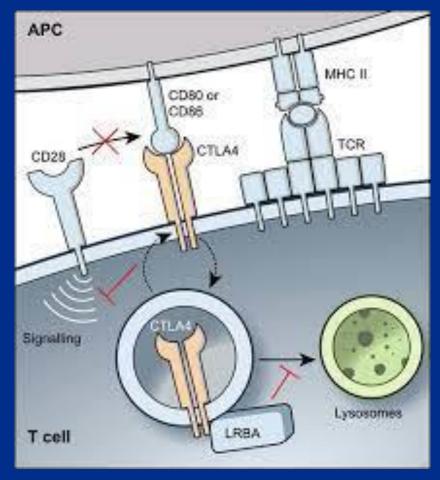
The benefit of making a specific genetic diagnosis

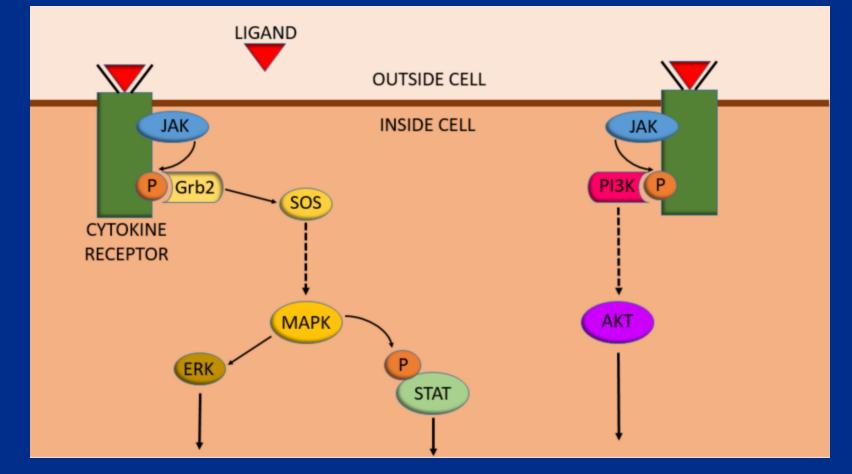
CTLA4 / LRBA

- Common Variable Immune Deficiency phenotype

 Low IgG, IgA, IgM
 Weak vaccine response
- Severe autoimmunity
 - Refractory thrombocytopenia
 - Enlarged organs
 - Interstitial lung disease
- Genetic testing revealed:
 CTLA4 mutation
- Treatment: Abatacept

 (CTLA4 fusion protein)




Image Source: Wikimedia Commons. Public Domain.

- PIK3CD gain-of-function
- Mutations in PIK3CD and PIK3R1 have overlapping features

NIAID Health Information: PIK3CD Disorder. Sept 2016.

LSU Health NEW ORLEANS School of Medicine Department of Pediatrics

Image source: Wikimedia Commons. Public Domain.

- Autosomal dominant inheritance
- CVID immunologic phenotype
- Combined immunodeficiency

Immunodeficiency Search

- Bacterial sinopulmonary infections
- Chronic viral infections
 - EBV
 - -CMV
- Autoimmunity, Lymphoproliferation
- Increased risk for lymphoma – EBV-driven B-cell lymphoma

1.NIAID Health Information: PIK3CD Disorder. Sept 2016.
 2.Lucas, C. L., Kuehn, H. S., Zhao, F., Niemela, J. E., Deenick, E. K., Palendira, U., ... & Uzel, G. (2014). Dominant-activating germline mutations in the gene encoding the PI (3) K catalytic subunit p110δ result in T cell senescence and human immunodeficiency. Nature immunology, 15(1), 88-97.

- Overactivity of PI3K pathway
- Hyperactivation of mammalian target of rapamycin (mTOR)
- Treatment
 - Rapamycin (sirolimus)
 - Inhibits mTOR
 - Leniolisib PI3K-delta inhibitor (>= 12 y/o)

Lucas, C. L., Kuehn, H. S., Zhao, F., Niemela, J. E., Deenick, E. K., Palendira, U., ... & Uzel, G. (2014). Dominant-activating germline mutations in the gene encoding the PI (3) K catalytic subunit p110δ result in T cell senescence and human immunodeficiency. Nature immunology, 15(1), 88-97.

- Autosomal dominant
- Hypogam with low switched memory B cells
- Combined immunodeficiency
- Autoimmunity
 - Cytopenias, enteropathy, ILD, DM
- Short stature

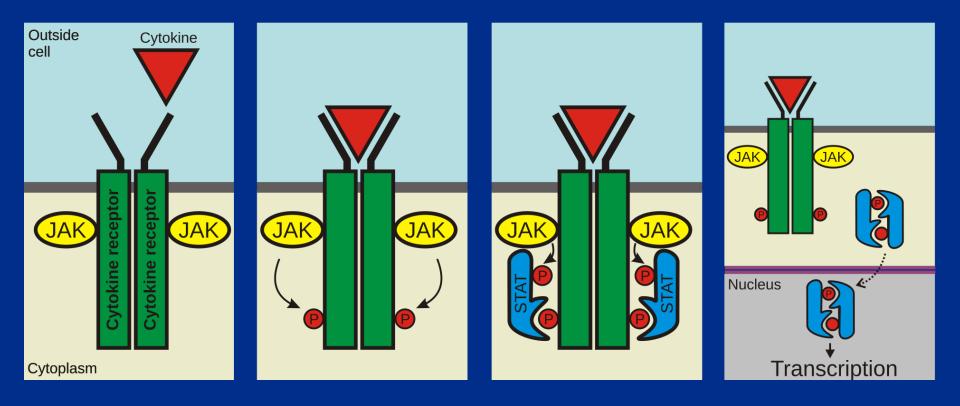


Image source: Wikimedia Commons. By Peter Znamenkiy - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=912703

- Treatment options:
 - Treatment with Tocilizumab (anti-IL6)
 - Dampens the IL6/JAK/STAT3 pathway
 - May be effective for autoimmunity
 - JAK Inhibitor
 - Dampens JAK/STAT signaling (larger reach)

- Treatment options:
 - Treatment with Tocilizumab (anti-IL6)
 - Dampens the IL6/JAK/STAT3 pathway
 - May be effective for autoimmunity
 - JAK Inhibitor
 - Dampens JAK/STAT signaling (larger reach)

(Other STAT-GOFs have been identified- similar presentation)

ADVANCED TESTING

Genetic Testing

- Not required for diagnosis and management
 - Especially those with infection-only phenotype
- In patients with <u>immune dysregulation</u>, <u>autoimmunity</u>, <u>malignancy</u>, or other <u>complications</u>, single-gene defects may be amenable to specific therapies and genetic diagnosis should be considered when possible.

Functional Testing (limited)

- Functional testing and/or protein expression can yield valuable insight.
- Valuable in resolving Variants of Uncertain Significance
- Availability now includes several CVID-like conditions:
 - APDS (Pharming)
 - LRBA (Mayo, Med College Wisconsin)
 - STAT-GOF studies (Med College Wisconsin)

Summary

- Antibody deficiencies are widely variable
- Some require aggressive treatment
- Association with autoimmunity
- All should be monitored over time
- Consider genetic testing, especially if more than infection-only phenotype
- Majority of patients have a good life!

Helpful Resources

- IDF Patient & Family Handbook for Primary Immunodeficiency Diseases, Sixth Edition | Immune Deficiency Foundation
 - primaryimmune.org/resources/print-material
- <u>https://www.immunodeficiencysearch.com/</u>
- https://www.medscape.com

