Welcome!

Thank you for joining us!
The webinar will begin shortly.
The Use of Prophylactic Antibiotics in Antibody Deficiencies

March 16th, 2023
IDF's Mission

Improving the diagnosis, treatment and quality of life of people affected by primary immunodeficiency through a community empowered by advocacy, education and research.
Housekeeping

Zoom Webinars
Attendees will not have access to their mic or webcam throughout the event.

Slides
To see the full slides, select "side-by-side" in the dropdown menu at the top of your Zoom screen.

Questions
Submit your questions throughout the session via the Q&A Box.
DISCLAIMER

Immune Deficiency (IDF) education events offer a wide array of educational presentations, including presentations developed by healthcare and life management professionals invited to serve as presenters. The views and opinions expressed by guest speakers do not necessarily reflect the views and opinions of IDF.

The information presented during this event is not medical advice, nor is it intended to be a substitute for medical advice, diagnosis or treatment. Always seek the advice of a physician or other qualified health provider with questions concerning a medical condition. Never disregard professional medical advice, or delay seeking it based on information presented during the event.
Connect & Collaborate

Monthly Lunch & Learns
Medical experts provide education on various diagnosis-specific topics.

IDF Webinars
Top Clinicians present on medical and lifestyle topics most pressing to the PI Community.

Get Connected Groups
Individuals and families living with PI can connect with others in their local community or online.

ASK IDF
Submit your questions about insurance, treatment options and more!

Annual PI Conference
Attend presentations from top immunology experts and engage with others in the PI Community.
WALK FOR PI 2023

Presented by Takeda

Philadelphia, PA: July 15
Charlotte, NC: July 29
Milwaukee, WI: August 05
San Francisco, CA: August 19
Boston, MA: September 09
St. Louis, MO: September 23
Tampa, FL: October 07
Dallas, TX: October 21

Or join our virtual Walk:
Coast to Coast: December 02

#WalkForPI
www.walkforpi.org

Scan to visit walkforpi.org
WELCOME!

Mark Ballow, MD
Professor of Pediatrics,
Division of Allergy & Immunology
University of South Florida
Johns Hopkins All Children’s Hospital

Immune Deficiency Foundation
Should Prophylactic Antibiotics be used in Primary Antibody Immune Deficiency?

What do we know?
Prophylactic Antibiotics in PI

- Currently, antibiotic prophylaxis is guided by the common pathogens seen in specific immunodeficiencies
- Experience with other chronic illnesses, eg. Cystic fibrosis, HIV, COPD, etc
Use of Prophylactic Antibiotics in Primary Immune Deficiency – Neutrophil Defects

- Chronic granulomatous disease
 - Typical pathogens are: *Staphylococcus aureus*, *Nocardia* species, *Serratia*, *Burkholderia cepacia*, and *Aspergillus*
 - Prophylaxis with trimethoprim-sulfamethoxazole (TMP-SMX)*
 - Autosomal CGD - resulted in the decreased incidence of nonfungal infections from 7.1 to 2.4 per 100 patient-months
 - X-linked CGD – 15.8 to 6.9 infections per 100 patient-months
 - No significant changes in the incidence of fungal infections
 - Itraconazole prophylaxis for fungal infections
 - Voriconazole and Posaconazole prevent invasive fungal infections
 - Toxicities – photosensitivity and hepatotoxicity (former) liquid formulation (latter)
- Interferon gamma
 - Stimulated the oxidative burst up to 8-fold
 - Approximately two-thirds of patients with CGD, regardless of genetic defect
 - *enhance bactericidal activity*

References:
- Margolis DM et al J Infect Dis, 1990
- Slack MA and Thomsen IP J Ped Infect Disease 2018
Use of Prophylactic Antibiotics in Primary Immune Deficiency

- T-cell immune deficiency - SCID
 - Prophylaxis for opportunistic pathogens
 - *Pneumocystis jirovecci*
 - TMP-SMX
 - Viral and fungal infections
 - Fluconazole/ acyclovir
 - Avoid live viral vaccines
 - Breast milk may transmit CMV

Kuruvilla M and de la Morena MT JACI Pract, 2013
Freeman AF and Holland SM Current Opin Allergy Immunol 2009
Humoral immune deficiencies

- Encapsulated bacteria –
 - *Streptococcus pneumoniae, Hemophilus influenza*

- Use of prophylactic antibiotics varies widely
What do we know?

Lack of Controlled Studies

- Nothing
- Nada
- Niets
- Niente
- Rien
- Ничего
- Τίποτα
Use of Adjunct Prophylactic Antibiotics

Fig. 4. Use of adjunct prophylactic antibiotics in primary immunodeficiency diseases (PIDs). Percentage of immunologists
Perceived Utility of Prophylactic Antibiotics in PIDD

Antibiotic prophylactic regimens in diseases with recurrent infections

<table>
<thead>
<tr>
<th>Disease process</th>
<th>Regimens studied</th>
<th>Reference no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrent AOM</td>
<td>Amoxicillin 20 mg/kg once or twice daily, 6 mo</td>
<td>4, 5</td>
</tr>
<tr>
<td></td>
<td>Sulfisoxazole 50 mg/kg/d, 6 mo</td>
<td>5</td>
</tr>
<tr>
<td>Chronic sinusitis</td>
<td>Erythromycin 250-500 mg twice daily, 12 wk</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Roxithromycin 150 mg daily, 12 wk</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Azithromycin 500 mg weekly, 8-20 wk</td>
<td>10</td>
</tr>
<tr>
<td>CF bronchiectasis</td>
<td>Azithromycin 500 mg 3 times a wk, 6 mo</td>
<td>15, 16</td>
</tr>
<tr>
<td>Non-CF bronchiectasis</td>
<td>Azithromycin 250 mg 3 times a wk, ≥3 mo</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Erythromycin 250 mg daily, 12 mo</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Azithromycin 500 mg 3 times a wk, 6 mo</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Azithromycin 250 mg daily, 12 mo</td>
<td>23</td>
</tr>
</tbody>
</table>
Antibiotic prophylaxis regimens in primary antibody deficiency

<table>
<thead>
<tr>
<th>PAD</th>
<th>Regimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLA or CVID (≥3 breakthrough infections or extremely severe infection on IgG)</td>
<td>Azithromycin 5 mg/kg PO 3/wk (alternate days) or 10 mg/kg/wk; SMX-TMP 5 mg/kg TMP component PO daily or 3/wk</td>
</tr>
<tr>
<td>THI and selective IgA deficiency (seasonal intermittent during winter or continuous prophylaxis)</td>
<td>Azithromycin 5 mg/kg PO 3/wk or 10 mg/kg/wk; amoxicillin 20 mg/kg PO once or twice daily; SMX-TMP 5 mg/kg TMP component PO daily or 3/wk</td>
</tr>
</tbody>
</table>

PO, By mouth.
Selective Antibody Deficiency

- Prophylaxis antibiotics (PA) vs. Ig replacement therapy
 - Prospective cross over study (Netherlands) of 64 patients
 - The overall efficacy of the two regimens did not differ
 - A smaller proportion of patients suffered a related adverse event while using PA (26.8% vs. 60.3%, \(p < 0.0003 \), chi-squared test).
 - Patients with persistent infections while using PA suffered fewer infections per year after switching to IRT (2.63 vs. 0.64, \(p<0.01 \)).

- Conclusion: comparable efficacy of IRT and PA in patients with SAD Patients with persistent infections during treatment with PA had less infections after switching to IRT.
3-year, double-blind, placebo controlled, randomized clinical trial to test whether oral azithromycin (250 mg administered once daily 3 times a week for 2 years) would reduce respiratory exacerbations in patients with PADs and chronic infection–related pulmonary diseases.
COPD chronic obstructive pulmonary disease
HRQoL Health Related Quality of Life
FEV1 Forced Expiratory Volume 1st sec
IgRT Immunoglobulin Replacement Treatment
PAD Primary Antibody Defect

Primary outcome

In the Azithromycin group lower risk for exacerbations

Exacerbation-free (%)

HR 0.5, log-rank p=0.03

Time to exacerbation (days)
Secondary outcomes

In the **Azithromycin** group:

- Lower risk for hospitalization
- Lower need for additional antibiotic courses
- No higher rate of macrolides resistant-carriage
- No drug-related toxicity
- Improved HRQoL
- No effect on FEV1
- Reduced count in blood of neutrophils
Other PIs

- Hyper IgM deficiency –
 - Similar infections as XLA and CVID but CD40L def is a partial T-cell defect –
 - CD40L deficiency T cell defects predispose to *Pneumocystis jiroveci (PCP)*, *Cytomegalovirus (CMV)*, toxoplasmosis, *cryptosporidiosis* and sclerosing cholangitis
 - PCP prophylaxis with TMP-SMX
Risks of Prophylactic Antibiotic Use
Deaths From Drug-Resistant Infections Set To Skyrocket

Deaths from antimicrobial resistant infections and other causes in 2050

- Antimicrobial resistant infections: 10.0m
- Cancer: 8.2m
- Diabetes: 1.5m
- Diarrhoeal disease: 1.4m
- Road traffic accidents: 1.2m
- Measles: 130,000
- Cholera: 120,000
- Tetanus: 60,000

Source: Review on Antimicrobial Resistance
Figure 2.6 Antibiotic use and AMR from 1990–2000 in selected countries

DDD: Defined Daily Doses
Total antibiotic use in outpatients versus prevalence of penicillin-nonsusceptible Streptococcus pneumoniae in 20 industrialized countries.
Source: Reproduced from " with permission.
<table>
<thead>
<tr>
<th>Urgent Threats</th>
<th>Serious Threats</th>
<th>Concerning Threats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbapenem-resistant Acinetobacter</td>
<td>*Drug-resistant Campylobacter</td>
<td>Erythromycin-Resistant Group A Streptococcus</td>
</tr>
<tr>
<td>Candida auris</td>
<td>*Drug-resistant Candida</td>
<td>Clindamycin-resistant Group B Streptococcus</td>
</tr>
<tr>
<td>Clostridioides difficile</td>
<td>ESBL-producing Enterobacterales</td>
<td></td>
</tr>
<tr>
<td>Carbapenem-resistant Enterobacterales</td>
<td>*Vancomycin-resistant Enterococci (VRE)</td>
<td></td>
</tr>
<tr>
<td>Drug-resistant Neisseria gonorrhoeae</td>
<td>*Multidrug-resistant Pseudomonas aeruginosa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*Drug-resistant nontyphoidal Salmonella</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*Drug-resistant Salmonella serotype Typhi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*Drug-resistant Shigella</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methicillin-resistant Staphylococcus aureus (MRSA)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*Drug-resistant Streptococcus pneumoniae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drug-resistant Tuberculosis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Watch List</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*Azole-resistant Aspergillus fumigatus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*Drug-resistant Mycoplasma genitalium</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*Drug-resistant Bordetella pertussis</td>
<td></td>
</tr>
</tbody>
</table>
Key Concepts on the Use of prophylactic Antibiotics in Patients with PI

- Patients with chronic granulomatous disease benefit from prophylactic antibiotics, antifungals, and possibly interferon-gamma
- There are no published controlled studies of the benefits of antibiotic prophylaxis in patients with antibody immune deficiency diseases
- Microbial antibiotic resistance is a significant problem with the use of long term prophylactic antibiotic use, especially for macrolides
- Although it may be a common practice to "rotate" or periodically change antibiotics to avoid the development of resistance to a specific drug, studies have not been performed to compare rotation strategies
THANK YOU!

Mark Ballow, MD
Professor of Pediatrics,
Division of Allergy & Immunology
University of South Florida
Johns Hopkins All Children’s Hospital
From all of us at IDF

Thank You!

You make the IDF community stronger.